[Total No. of Questions: 09] Uni. Roll No.

[Total No. of Pages:]

Program: B.Tech. (Batch 2018 onward)

Semester: 2nd

Name of Subject: Mathematics-11

MORNING

Subject Code: BSC-104

1 1 MAY 2023

Paper ID:15940

Time Allowed: 03 Hours

Marks: 60

Max.

NOTE:

1) Parts A and B are compulsory

- 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice
- 3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

Q1.

- State Dirichlet's conditions for a function f(x) to be expressed as Fourier series. a)
- Define concavity and convexity of a curve y = f(x). b)
- Evaluate the first order partial derivatives of $u = \frac{x-y}{x+y}$ c)
- Evaluate $\iint (x^2 + y^2) dx dy$ over the region in the positive quadrant for which d) $x + y \le 1$.
- If \overrightarrow{E} and \overrightarrow{F} are irrotational then prove that \overrightarrow{E} X \overrightarrow{F} is solenoidal.
- f) Evaluate $\int_0^2 \int_1^2 \int_0^{yz} xyz \, dx \, dy \, dz$.

Part - B

Marks: 04 each

- If $u = \sin^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, Prove that : $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{\sin u \cos 2u}{4\cos^3 u}$. Q2.
- Trace the curve $r = a (1 + \sin \theta)$ by discussing its features. Q3.

Page 1 of 2

[Marks: 12 each]

- **Q4.** Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy \ dy \ dx$.
- Q5. Discuss the Physical interpretation of curl of a vector point function.
- **Q6.** What is the directional derivative of the function $4xz^3 3x^2yz^2$ at the point (2, -1, 2) along z-axis.
- **Q7.** Expand $f(x) = x^2$; $-\pi \le x \le \pi$ as a Fourier Series.

Q8. Verify Green's theorem for $\oint_c (xy + x^2)dx + (x^2 + y^2)dy$, where c is the boundary of the region defined by the lines $x = \pm 1$, $y = \pm 1$.

OR

- a) Find the smaller of the areas bounded by the ellipse $4x^2 + 9y^2 = 36$ and the straight line 2x + 3y = 6, Using double integration. (6)
- b) Using triple integration find the volume of the tetrahedron bounded by x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (6)
- **Q 9.** Expand $f(x) = x \sin x$; $0 \le x \le 2\pi$ as a Fourier Series.

OR

Use Lagrange's method to find the minimum value of $x^2 + y^2 + z^2$, given that $xyz = a^3$.
